-
Theoretical Study of the Load Distribution on the Threads for Roller Screw Mechanisms of a Friction Type(16年摩擦型滾柱絲杠螺紋載荷分布的理論研究)
t
The paper provides theoretical research of load distribution across the thread turns of the planetary roller-screw mechanism
(RSM). A characteristic feature of the theoretical approach of the paper is the use of a RSM rod model with two elastic contact
layers (the first layer is composed of screw-rollers, the second – of nut-rollers). A threaded mating of each elastic layer is
considered as a connection with continuous turns, which is closest to the truth and consistent to classical approaches. A similar
approach was applied for the ball-and-screw mechanisms with a member point contact. Thus, differential analytical closed-form
equations may be used to solve this task.
Based on the initial equation of compatibility of strains, axial offsets of contact layer points and the sum of screw, roller and nut
turn deflections are calculated; then, load distribution across the turns may be determined. Load distribution depends both on the
RSM geometry (pitch, profile angle, entry number, and thread diameter), material of threaded elements, manufacturing accuracy,
and on mating friction forces. With the dependencies of load distribution across the turns of zero-clearance RSMs obtained, we
have determined that maximum load is imposed on the outermost turns, which corresponds to classical solutions proposed by N.
E. Zhukovski.
閱讀:
2016-07-15
-
Static Load Distribution and Axial Stiffness in a Planetary Roller Screw Mechanism(16年行星滾柱絲杠的靜載荷分布和軸向剛度)
In this paper, an original approach is proposed to calculate the static load distribution
and the axial stiffness of a planetary roller screw (PRS) mechanism. Assuming that the
external loading is shared equally over an arbitrary number of rollers, only a sector of
the system is represented to save on computing time. The approach consists in using a
structure of bars, beams, and nonlinear springs to model the different components of the
mechanism and their interactions. This nonlinear model describes the details of the mechanism and captures the shape of the nut as well as the bending deformation of the roller.
All materials are assumed to operate in the elastic range. The load distribution and the
axial stiffness are determined in three specific configurations of the system for both compressive and tensile loads. Further, the influence of the shape of the nut is studied in the
case of the inverted PRS. The results obtained from this approach are also compared to
those computed with a three-dimensional finite-element (3D FE) model. Finally, since the
calculations appear to be very accurate, a parametric study is conducted to show the
impact of the bending of the roller on the load distribution.
閱讀:
2016-01-12
-
Load distribution of planetary roller screw mechanism and its improvement approach(15年行星滾柱絲杠的載荷分布)
A model of load distribution over threads of planetary roller screw mechanism (PRSM) is developed according to the
relationships of deformation compatibility and force equilibrium. In order to make the applied load of PRSM uniformly
distributed over threads, an improvement approach is proposed, in which the parameters of thread form of roller and
nut are redesigned, and the contact conditions of roller with screw and nut are changed to compensate the axial
accumulative deformation of shaft sections of screw and nut. A typical planetary roller screw mechanism is taken as
example to analyze the load distribution, and the effects of installation configurations, load conditions and thread form
parameters on load distribution are studied. Furthermore, the improvement approach is applied to the PRSM, and it is
proved to be beneficial to reach uniform load distribution over threads.
閱讀:
2015-09-01
-
Kinematics Analysis of the Roller Screw Based on the Accuracy of Meshing Point Calculation(15年滾柱絲杠基于嚙合點精度計算的運動學分析)
This paper investigates the meshing behavior of the roller screw, a mechanical transmission device characterized by threaded rollers
that transfer a load between the nut and the screw, by analyzing the meshing characteristics between screw and rollers. This study
seeks to establish a more accurate mathematical model for the thread surface by creating a modeling process in which the max
radiuses of the threads are calculated more precisely. The contact line distribution and the contact location were also calculated in
order to confirm the cross section of the meshing points. In the research presented in this paper, the actual transmission ratio is
analyzed and the study results in a new method to calculate the actual transmission ratio. In this study, the helical angle and the
vertex angle are proven to be of great significance after a careful analysis of their influence is conducted.
閱讀:
2015-03-25
-
Experimental simulation of rolling–sliding contact for application to planetary roller screw mechanism(15年滾動滑動接觸的實驗模擬及其應用)
The planetary roller screw mechanism is used in the aeronautics industry for electro-mechanical
actuators application. It transforms a rotational movement into a translation movement, and it is
designed for heavy loads. The main components are made of martensitic stainless steel, and lubricated
with grease. Like most usual rolling mechanisms, smearing and jamming can occur before the
theoretical fatigue lifetime, especially in defective lubrication conditions.
The actuated load is carried by small contacts between the threads of the screw, the rollers and the
nut. The static single contact can be described as an ellipsoid on flat contact; motion consists of rolling
with sliding perpendicular to the rolling direction. A calculation method based on elastic theories (Hertz,
Carter, Johnson) has been implemented. It calculates the normal and tangential stresses distributions,
generated in the micro-slip and stick zones of the contact area, using several input parameters such as
material properties, normal force, and creep ratio.
A specific apparatus has been developed to support these calculations and to experimentally study
the damage of the contacts in this mechanism. It consists of a freely rolling wheel loaded on a rotating
disc with a component of sliding that simulates the roller screw contact. The tribometer inputs are the
normal load, the speed, the creep ratio, and the lubrication. The wheel rolling speed and the tangential
force generated in the direction perpendicular to rolling are measured.
The experiments reveal a quick adhesive wear in dry or bad lubricated conditions, while a low
friction coefficient remains if the contact is well lubricated. The influence of the input parameters
concurs with the theoretical calculation. The evolution of grease lubrication during duty lifetime and the
influence of the tribo-chemical films on this lifetime are also studied.
閱讀:
2015-03-19
主站蜘蛛池模板:
无遮挡h黄漫画免费观看|
日本黄色激情|
欧美aav|
亚洲 欧美 日韩在线|
最近免费字幕中文大全在线观看|
国产精品麻豆久久久|
日韩成人影院|
日韩黄色在线视频|
久久精品午夜视频|
国产成人永久在线播放|
欧美激情人成日本在线视频
|
一个人看的手机视频www|
欧美在线亚洲|
亚洲精国产一区二区三区|
第四色视频|
久久精品国产一区二区三区不卡|
亚洲欧美国产视频|
一本大道无香蕉综合在线|
一级毛片免费在线播放|
久久国产成人精品|
国产小视频网站|
在线黄色网|
国产女人又爽又大|
久久婷婷午色综合夜啪|
激情综合亚洲|
免费又黄又硬又大爽日本|
精品一区二区三区影院在线午夜|
午夜性刺激在线观看视频|
成年视频xxxxx在线网站|
生活一级毛片|
日韩在线看片中文字幕不卡|
亚洲成a人不卡在线观看|
国产亚洲人成网站天堂岛|
中文字幕在线视频免费观看|
国产一区二区在线视频观看|
精品久久久久久|
男女下面一进一出的视频免费|
97在线免费|
五月婷婷综合在线视频|
国产精品亚洲一区二区三区正片
|
欧美一级做性受|